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LE'ITER TO THE EDITOR 

Some mathematical properties of classical many-body systems 
with repulsive interactions 

A Baramt and J S Rowlinson 
Physical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 342, 
U K  

Received 27 December 1989 

Abstract. It is shown that, for systems with repulsive (non-negative) interactions, the 
Yang-Lee zeros of the grand canonical partition function lie on the real z axis. As a result, 
a series of successively improving lower and upper bounds for the thermodynamic ratio 
of density to activity is obtained. In addition bounds on the transition activity and density 
are given in terms of the cluster coefficients. 

There is considerable evidence to suggest that the structure of a fluid and the nature 
of the fluid-solid phase transition are determined primarily by the short-range repulsive 
part of the intermolecular potential. The long-range attractive component is relatively 
weak and, as far as the structure of the fluid is concerned, can be treated as a 
perturbation. As a result much effort has been put into studying the thermodynamic 
functions of systems with repulsive two-body interactions [ 11. A complete description 
of the fluid phase is provided by the Mayer cluster series in terms of the activity, z. 
It is desirable to check the mathematical consistency and numerical accuracy of 
approximate methods and machine computations against the Mayer series. However, 
in the case of a repulsive interaction, the radius of convergence of the cluster series 
is determined by a singularity at a point z = -zo,  relatively close to the origin, on the 
negative real axis [2]. As a result the physically relevant region is far outside the radius 
of convergence of the Mayer series, which provides reliable results only in the extremely 
low-density regime. Lieb [3] introduced a modified expansion scheme, based on the 
cluster coefficients, which results in an alternating sequence of upper and lower bounds 
for the thermodynamic functions. Unfortunately his bounds improve successively only 
in the circle of convergence, i.e. at low densities. In this letter we extend his method 
and show that successively improving bounds can be obtained for the entire fluid 
branch. The location of the dominant singularity (radius of convergence) and the 
location of the transition activity to another phase can be bounded by using as many 
coefficients as are available. 

We deal with an open system of classical particles interacting via a purely repulsive 
potential. The Mayer series for the pressure is 

P p =  2 bnzn (1) 
n = l  

t Permanent address: Atmospheric Optics Department, Soreq NRC, Yavne 70600, Israel. 
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where /3 = l / k T ,  and the coefficients { b , }  are the Mayer coefficients with b, = 1 and a 
non-zero b2. The number density follows from (1) as 

Consider the symmetric tridiagonal matrix R defined by the requirement [4] 

W ) I ,  = ( n  + 1)tbn+1l* ( 3 u )  

Then the density is given by 

p(z) = (lz-I  + R);,' 

where 1 is the infinite unit matrix. The first matrix elements are given by 

RI1 = 21b2l R:2 = 3b3 -2h:  R:2R22 = 41 b,l- RI 13b3 - R:>R, I .  

The Lieb lower (upper) bounds are given in terms of R by 
- I  

p ( z ) / z S  [ ~ + R , , Z - R : ~ Z ~  f: (-l)'(R$)llz'] 
j = O  

and 

O < p ( z ) / z < l  (46) 

with n odd (even), and where R2 is the first minor of R. 
The lower bounds are valid for all z > 0 but they become useless for large z. The 

upper bounds are valid for small z only. R matrices were constructed using the available 
information for many lattice models and continuum models [4]. In all cases it was 
found that all the matrix elements are real and positive. We shall show that this is 
indeed true. (In the construction process the off-diagonal terms are determined only 
up to their square; the physical properties are invariant to the choice of the sign of 
the root.) Let us write the equation for the thermodynamic ratio as a continued fraction, 

p(z) /z  = 1/[1+ RIIZ - R:2zrl(z)l ( 5 a )  

TI(Z) =r1+Rllz-zlp(z)l/R:,z.  ( 5 b )  

r l (z)  S (-l)'(R{)llz'+' and o< r,(z) < RII/R:2. ( 5 c )  

where rI(z)  is the first remainder. Then 

Applying the Lieb inequalities to z /p  one obtains for rl(z) 
n 

j = O  

It is easy to see that R:,>O, since this inequality follows immediately from the 
Groeneveld inequalities [2], and that Rz2 > 0. The remainders obey the recursion 
relation 

(6) 
Successive applications of the inequalities ( s a )  to the remainders result, at least for 
sufficiently small z, in the inequalities 

0 < rn ( z ) < z (7) 

r n  ( z 1 = [ 1 + Rnnz - Z/  r n  - I ( z )I/ R n + 1 Z. 
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for all n. Equation (7) combined with (6) implies that R,, and R ; ( , + , )  are positive 
for all n, and that the matrix R is a real symmetric matrix with a spectrum of real 
eigenvalues and positive residues. Thus the Yang-Lee zeros of the grand partition 
function lie on the real z axis in the two intervals z < -zo and z > z , ,  where z, is the 
activity of the fluid-solid phase transition, or the termination activity of the fluid phase 
for a system that undergoes a first-order transition. The rest of the complex z plane 
is free from zeros. The density is given by the shifted Stieltjes integral 

I K 

p ( z )  = z a , / (  1 + AJz) = z 
J = I  z o '  

f (x) / (  1 + zx) dx. 

In ( 8 a )  the eigenvalues are bounded by - l / z t < A j <  l / z o .  The normalised weight 
function f ( x )  > 0 for all x in the interval. The pressure is given by a similar integral, 

For a system that does not undergo a phase transition, i.e. l / z t = O ,  the matrix R is 
positive definite, and the cluster coefficients form a series of Stieltjes. In the general 
case the matrix ( l z - '  + R) is positive definite for 0 < z < z, or, equivalently, all the 
remainders r , ( z )  are positive there. It is therefore possible to construct in this interval 
two sequences of bounds for the density, a monotone increasing sequence of lower 
bounds and a monotone decreasing sequence of upper bounds, which converge to a 
common limit. The set of lower bounds is formed by successive truncations of the 
continued fraction. The first lower bound 

P l ( Z )  = z / ( l +  RIlZ) ( 9 a )  

~ Z ( Z )  = Z [  1 + R , ~ z  - R12z2/( 1 + R * ~ Z ) ] - '  ( 9 b )  

is identical to the first lower bound of Lieb. But the second one 

is larger than the corresponding Lieb bound for all 0 < z < z,. Divergence of a lower 
bound due to the existence of a pole at some z' indicates that z '> z , .  More precisely 
the existence of a negative eigenvalue for any sub-matrix of R implies that the system 
undergoes a phase transition and z, < -A ;in, provided that Amin  < 0. 

The construction of the sequence of upper bounds is based on the fact that z ,  is 
the largest point for which the matrix ( l z - '  + R)  is positive definite. An upper bound 
is formed by a truncation followed by a replacement of the term R,, by the term RL,,, 

R L ~  = - l / z t +  Ri(n-l)Dn-*/Dn-i ( l o a )  
where D, is the determinant of the truncated matrix ( l z ; ' +  R,). The upper bounds 
depend, through RL,, on z, whose value is usually not known; they are therefore not 
very useful as numerical bounds on the density. The positivity of the RL, is, however, 
used to provide a sequence of improving lower bounds for z,. The first of these z 1  is 
given by 

z I  = [ R , l + ( R ~ I + 4 R ~ 2 ) 1 ' 2 ] / 2 R , , .  ( l o b )  

To our knowledge the best previous lower bound for z, is that of Meeron [ 5 ]  z,> R I ,  
which is smaller even than z , .  All the available information can be used to obtain a 
lower bound for z, and then, by performing an appropriate truncation of the continued 
fraction, to obtain a lower bound for the transition density. 
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The exact location of zo,  the radius of convergence of the Mayer expansion, is an 
interesting mathematical problem in itself, but it may also have a physical significance. 
The physically relevant properties of the system are screened by the dominant singular- 
ity at -zo. A suitable conformal mapping results in a new expansion whose radius of 
convergence is determined by z,, and the point -zo is mapped to the exterior of the 
new circle of convergence. The efficiency of the mapping increases with the accuracy 
of the estimates of zo. Groeneveld [2] showed that zo obeys the inequalities 

l / R , , e < z o <  l / R l l .  (11) 

These are the best possible general bounds on zo that depend only on b2. Ree [6] 
improved these bounds by introducing the effect of b, on the higher cluster coefficients. 
The set of largest eigenvalues of the upper sub-matrices of R forms a sequence of 
improving upper bounds for zo.  The cluster coefficients themselves are bounded by 

where a j ( n )  and A,(n)  are the j th  residue and eigenvalue of the n x n upper sub-matrix 
of R. For ( m  + 1) 6 2 n  the inequality is an equality. 

It is worthwhile investigating the asymptotic behaviour of the elements of the R 
matrix and their effect on the onset of the transition. Let p be the absolute value of 
the smallest negative eigenvalue of R. Then 

det(R+ p l )  = ( R I ,  + p )  det(R,+ p1) - R:* det(R,+pl)  = 0. 

By assuming det( R2 + p 1) # 0 one obtains 

(RI 1 + p 11 R:2 = r l ( l / p )  c RI I /  R?2. 

Thus either a negative eigenvalue does not exist or det( R2 + p 1) = 0. The latter implies 
that the determinants of all the other minors vanish too. The minors of an infinite 
Toeplitz [7] matrix have this property. Indeed, based on numerical inspection, it was 
conjectured [4] that for all repulsive systems the matrix elements converge to constants 
along the diagonals, forming a Toeplitz-like matrix. 

Finally we would like to conjecture that the addition of an attractive component 
to the potential does not change the above results, provided the temperature is higher 
than the critical temperature. The Yang-Lee zeros are still located on the real z axis, 
z, is shifted towards the origin, while the singularity at -zo moves towards lower z 
values as the temperature decreases. Complex Yang-Lee zeros start to appear only 
for T s  T,. 
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